Particle Swarm Optimization Trained Neural Network for Aquifer Parameter Estimation

نویسندگان

  • Sudheer Ch
  • Shashi Mathur
چکیده

Numerical simulation in aquifers require knowledge of parameters that govern flow through aquifers, however, at times, these parameters are not available. Estimation of such parameters has thus gained importance in the recent years and researchers have suggested various ways by which these parameters can be obtained. Amongst the various methods used for parameter estimation, Artificial Neural Networks (ANN) has shown promise in determining parameters for non leaky confined aquifers. Usually some gradient algorithms including the Back Propagation (BP) technique are used for training a network, however these procedures exhibit slow convergence. Besides this, the solution gets easily entrapped in a local minima. The ANN proposed in this study employs a Particle Swarm Optimization (PSO) technique to train the perceptrons to predict the storage coefficient and transmissivity of aquifers. PSO technique could be an effective alternate training algorithm for ANN's since it is found to much accurate when compared to the existing conventional algorithms. Besides this, since PSO is a heuristic optimization technique, a global optimal solution can be obtained. Further, a sensitivity analysis is later carried out in the study to evaluate the most suitable ANN characteristics which includes the learning rate, the momentum factor, and the number of neurons in the input, hidden and output layers. Also, the impact of maximum velocity and acceleration constants of PSO on ANN convergence is studied so as to obtain the best possible value of parameters to minimize error. Further the proposed Particle Swarm Optimization trained Neural Network is employed in aquifer Parameter Estimation for the specific cases and the results are compared with the other existing gradient algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of ICDs' Port Sizes in Smart Wells Using Particle Swarm Optimization (PSO) Algorithm through Neural Network Modeling

Oil production optimization is one of the main targets of reservoir management. Smart well technology gives the ability of real time oil production optimization. Although this technology has many advantages; optimum adjustment or sizing of corresponding valves is still an issue to be solved. In this research, optimum port sizing of inflow control devices (ICDs) which are passive control valves ...

متن کامل

Traffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization

Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...

متن کامل

Improving Accuracy of DGPS Correction Prediction in Position Domain using Radial Basis Function Neural Network Trained by PSO Algorithm

Differential Global Positioning System (DGPS) provides differential corrections for a GPS receiver in order to improve the navigation solution accuracy. DGPS position signals are accurate, but very slow updates. Improving DGPS corrections prediction accuracy has received considerable attention in past decades. In this research work, the Neural Network (NN) based on the Gaussian Radial Basis Fun...

متن کامل

Modeling heat transfer of non-Newtonian nanofluids using hybrid ANN-Metaheuristic optimization algorithm

An optimal artificial neural network (ANN) has been developed to predict the Nusselt number of non-Newtonian nanofluids. The resulting ANN is a multi-layer perceptron with two hidden layers consisting of six and nine neurons, respectively. The tangent sigmoid transfer function is the best for both hidden layers and the linear transfer function is the best transfer function for the output layer....

متن کامل

Artificial Intelligence Based Approach for Identification of Current Transformer Saturation from Faults in Power Transformers

Protection systems have vital role in network reliability in short circuit mode and proper operating for relays. Current transformer often in transient and saturation under short circuit mode causes mal-operation of relays which will have undesirable effects. Therefore, proper and quick identification of Current transformer saturation is so important. In this paper, an Artificial Neural Network...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012